

不同栽培因子对杂交晚稻家优 111 产量的影响

谭旭生 刘立新 管恩相 曾跃华 李建彬 李智谋 刘 勇 郭文高 (湖南省贺家山原种场,常德 415123)

摘要: 为充分挖掘杂交晚稻家优 111 的增产潜力,对其播种期、育秧栽插方式、栽插密度、施肥水平、水分管理等不同处理进行栽培试验。结果表明: 在确保家优 111 安全齐穗的前提下,最佳适宜播期为 6月 20 日左右,采用湿润水育秧方式,栽插密度保证在 24万/hm²左右,施纯氮用量 110~150kg/hm²,水分管理按前期湿润灌溉、孕穗期浅水灌溉、抽穗至成熟期干湿交替灌溉的原则进行,即可获得较为理想的产量。

关键词:杂交晚稻;家优 111;播种期;施氮量;水育秧;软盘育秧;产量

家优 111 是湖南省贺家山原种场自主选育的三系中熟杂交晚稻新组合,2016 年 6 月通过湖南省农作物品种审定委员会审定(湘审稻 2016015)。该品种具有高产稳产、生育期适宜、株叶形态好、适应性广、落色好的特性。为使该品种更好地服务于大田生产,加快品种推广步伐,笔者于 2016 年分别从家优 111 的播种期、育秧栽插方式、栽插密度、施肥水平、水分管理等方面开展栽培技术研究,为湘北稻区家优 111 的高产栽培和大面积推广提供参考依据。

1 材料与方法

- 1.1 试验田基本概况 试验在湖南省贺家山原种场种业科学研究所试验基地进行。试验田基本情况:海拔 29.2m,29°01′15″N,111°54′29″E,成土母质为近代河流冲积物和湖泊冲积物,耕地为河湖冲积土壤,紫潮沙泥,具备较好的生产条件,灌溉方便,土壤pH值8.1,有机质30.3g/kg,碱解氮138mg/kg,有效磷21.4mg/kg,速效钾127mg/kg,缓效钾338mg/kg。前作为紫云英绿肥种子田。
- 1.2 试验材料 本试验以家优 111 为试验材料,软盘育秧时使用 353 孔秧盘,肥料分别使用有效养分 46% 尿素、60% 氯化钾、12% 磷肥。

1.3 试验设计

1.3.1 不同施氮量和栽插密度试验 试验设氮肥用量和栽插密度两因素。氮肥为主区,设4个纯N用量:F0(0kg/hm²)、F1(105kg/hm²)、F2(150kg/hm²)、F3(195kg/hm²);密度为裂区,设3个密度:D1(24万穴/hm²)、D2(30万穴/hm²)、D3(36万穴/hm²)。主区面积为60m²,裂区面积20m²,共12个小区。各

小区间作田埂并包塑料膜隔开,四周设保护行。试验采取水育秧,2016年6月15日播种,7月7日移栽。氮肥施用分3次,基肥在7月6日施用(占总氮量50%),7月17日第1次追施分蘖肥(占总氮量30%),8月6日第2次追穗肥(占总氮量20%)。磷肥全部用作基肥,磷肥用量折合成 P_2O_5 为50kg/hm²,钾肥作基肥和穗肥各占50%,钾肥总用量折合成 K_2O 为120kg/hm²,其余栽培管理措施与大田生产相同。

- 1.3.2 不同播期和育秧栽插方式试验 试验设 6 月 10 日(T1)、6 月 15 日(T2)、6 月 20 日(T3)、6 月 25 日(T4) 4 个播期处理,每期均采用水育秧(Y1)和软盘育秧(Y2)两种方式,到适宜秧龄后分别于7月2日、7月7日、7月12日、7月17日采用手工插植或抛秧移栽,手工插植规格为20cm×20cm。各小区间作田埂并包塑料膜隔开,四周设保护行。小区共8个,每小区面积为13.34m²。其余栽培管理措施与大田生产相同。
- 1.3.3 不同水分管理模式试验 试验设 W1:淹水灌溉、W2:湿润灌溉(前期)+浅水灌溉(孕穗期)+干湿交替灌溉(抽穗至成熟期)、W3:旱种3种水分管理模式;设施氮(N1,240kg/hm²)和不施氮(N2,全生育期不施氮肥)2种氮肥处理,试验小区共6个,每小区面积为13.34m²。淹水灌溉处理保证小区全生育期有水灌溉;旱种处理前期浅水移栽、寸水活蔸后及时排干,保证小区全生育期无水灌溉。各小区间作田埂并包塑料膜隔开,四周设保护行。试验采取水育秧,6月15日播种,7月7日移栽,栽植规格

为 $20 \text{cm} \times 20 \text{cm}$ 。磷肥全部用作基肥,磷肥用量折合成 P_2O_5 为 50kg/hm^2 ,钾肥作基肥和穗肥各占 50%,钾肥总用量折合成 K_2O 为 120kg/hm^2 。其余栽培管理措施与大田生产相同。

1.4 测定项目 做好生育期观察记载,田间考察基本苗、最高苗、有效穗数。成熟期田间取样进行室内考种,主要考察有效穗数、每穗总粒数、每穗实粒数、结实率与千粒重等经济性状^[1]。每小区单收单晒测定实际产量^[2]。

2 结果与分析

2.1 不同施氮量和栽插密度对产量及构成因素的影响 从表 1 可知,在同一密度条件下,其产量均随着施氮量的增大先增加后有所下降,以处理 D1F2产量最高,达 9.31t/hm²,处理 D3F1产量次之;施氮处理中,在同一肥力水平条件下,密度大的处理其产量反而较低。可见,家优 111 在种植密度较稀(D1)且肥力水平中等(F2)条件下,可获得较为理想的产量。家优 111 在较高肥力水平(F3)条件下,全生育期比其他肥力水平下略长;在不同肥力水平及不同栽培密度条件下,千粒重和结实率较为稳定,这与管恩相等^[3]的试验研究结果相一致;适当的稀植(D1)比密植(D3)每穗总粒数相对较高;处理 D1F2的有效穗数最多。可见有效穗数和每穗总粒数对产量的净贡献率较大。

表 1 不同施氮量和栽插密度对产量及构成因素的影响

处理	生育期 (d)	有效穗数 (万/hm²)			千粒重 (g)	, —
D1F3	118	245.4	164.8	91.9	27.4	8.67
D1F2	116	265.5	161.7	92.5	27.2	9.31
D1F1	115	243.1	159.3	91.2	27.6	8.75
D1F0	115	147.2	143.3	92.9	27.9	5.42
D2F3	116	221.8	147.3	92.9	27.4	8.28
D2F2	114	223.6	149.4	92.4	26.9	8.63
D2F1	114	235.5	155.6	89.7	27.8	8.64
D2F0	114	155.9	138.7	92.0	27.8	5.53
D3F3	115	214.5	151.7	92.5	27.9	8.40
D3F2	114	227.3	152.0	91.2	27.2	8.60
D3F1	114	251.6	153.2	88.7	27.1	8.85
D3F0	114	166.5	143.2	91.9	26.9	5.89

2.2 不同播期和育秧栽插方式对产量的影响 从表 2 可知,在同一播期条件下,湿润水育秧(Y1)比软盘育秧(Y2)的产量略高。在湿润水育秧(Y1)方式下,家优 111 不同播期对产量影响关系为 T3>T1>T2>T4,T3 产量最高;在软盘育秧(Y2)方式下,家优 111 不同播期对产量影响关系为 T3>T1>T2>T4;表明家优 111 在不同育秧栽插方式下,播期对产量的影响较为一致,以播期 6 月 20 日处理的产量最大。

在不同播期及不同育秧方式条件下,家优 111 稻谷千粒重均较为稳定;在同一育秧方式条件下,随着播期的推迟品种生育期延长。在同一播期条件下,湿润水育秧对应处理比软盘育秧每穗总粒数高,而有效穗数与结实率相当。结果表明,每穗总粒数对产量的净贡献率较大。

表 2 不同播期和育秧栽插方式对产量及构成因素的影响

处理	生育期 (d)	有效穗数 / (万 /hm²)	毎穗总 粒数	结实率 (%)	千粒重 (g)	产量 (t/hm²)
Y1T1	116	245.8	153.9	91.5	29.9	9.27
Y1T2	117	231.3	149.7	92.3	29.9	9.15
Y1T3	119	246.4	169.6	84.9	29.5	9.58
Y1T4	123	265.5	143.3	89.9	29.0	9.14
Y2T1	115	243.2	146.8	92.7	29.5	8.99
Y2T2	116	231.6	139.8	91.6	29.8	8.81
Y2T3	118	247.5	146.7	87.2	29.3	9.32
Y2T4	120	258.1	131.6	86.9	28.8	8.59

2.3 不同水分管理模式对产量的影响 从表 3 可知,在常规施氮和不施氮条件下,不同水分管理对产量影响关系均为 W2>W1>W3;其中以旱种管理模式下 N2W3 产量最低,仅 5.48t/hm²。表明家优 111 对水分敏感,不适宜作旱作种植。

表 3 不同水分管理模式对产量及构成因素的影响

处理	生育期 (d)	有效穗数 / (万 /hm²)	毎穗总 粒数	结实率 (%)	千粒重 (g)	产量 (t/hm²)
N1W1	118	225.1	168.6	87.7	27.6	8.60
N1W2	116	247.5	176.3	90.3	27.1	9.88
N1W3	115	183.6	174.0	92.5	26.8	6.10
N2W1	116	187.4	151.4	91.1	26.8	5.87
N2W2	115	186.8	158.2	90.1	27.5	6.40
N2W3	114	157.5	155.6	93.8	27.1	5.48

玉米耐除草剂药害新利器——失正达益佩威[™] 种衣剂

秦宝军 朱秀森 姜付俊 刘忠诚

(吉林省辽源市农业科学院,辽源 136200)

摘要:选用甜玉米品种脆王和常规玉米品种吉东 56 作为供试材料进行试验,分析先正达益佩威 TM 种衣剂对玉米不同除草剂的耐药性。结果表明,包益佩威 TM 种衣剂的受药害率和弱苗率比不包益佩威 TM 低,并且随着益佩威 TM 施用剂量的增加,受药害率和弱苗率逐渐降低,随着除草剂使用剂量的加大,受药害率和弱苗率逐渐升高,且处理之间均达到极显著的差异。包益佩威 TM 种衣剂的出苗率均比不包益佩威 TM 高。

关键词: 玉米;耐除草剂;先正达;益佩威™

随着我国农业供给侧结构性改革的不断深入推进,东北地区的种植结构也悄悄发生了变化。其中大豆—玉米的轮作种植模式广受关注^[1],但是这种轮作种植模式使大豆后茬药害的风险聚集增加。农户施药技术和设备落后,以及加大用药量的施药习惯和极端气候的频繁发生,均导致除草剂药害频发。可以说这些都对农户造成非常大的困扰,同样也是他们的一大痛点。

自 2014 年起,步入"种业寒冬",这让每一位种子从业者感受到它的残酷:玉米种植面积减少、品种的繁杂、同质化严重、库存高企等困境^[2],2016 年甚至还出现一元三斤粮的局面,加上农资不停涨的现实,让农户们欲哭无泪。

针对当下现状,先正达种衣剂团队推出玉米耐除草剂药害新利器——先正达益佩威 TM 种衣剂,旨

在提供先进的配套技术和解决方案,为种业公司找 到卖点和竞争优势,为农户们种植玉米提高产量、增 加收益,让大家在"寒冬"中感到温暖。

1 材料与方法

- **1.1 供试材料** 选用甜玉米品种脆王和常规玉米品种吉东 56 为试验材料。
- 1.2 试验方法 2017年在辽源市龙山区工农乡大良村辽源市农科院的试验基地进行试验,小区规格为长 6m、宽 4.55m, 株距为 25cm, 每个小区 175 株。5月10日人工单粒播种,5月9日晚人工喷施除草剂咪唑乙烟酸和异噁草松,5月10日清晨人工喷施除草剂乙草胺和 2,4-D 丁酯。分别在 5月23日和6月2日两次调查玉米田受药害和耐除草剂药害的情况。药害率 = 明显药害株数/出苗株数×100%。

种衣剂设3个处理,分别为A1:锐胜[®]600 FS

3 结论

本试验结果表明,家优 111 在种植密度较稀(D1)且肥力水平中等(F2)条件下,可获得较为理想的产量,达 9.31t/hm²;在湿润水育秧(Y1)方式下,以播期 6月 20 日产量最大,达 9.58t/hm²;在常规施氮条件下,家优 111 以湿润灌溉(前期)+浅水灌溉(孕穗期)+干湿交替灌溉(抽穗至成熟期)的灌溉模式下产量最大,达 9.88t/hm²。

综上所述,家优 111 在湘北双季稻区作晚稻种植的高产栽培方式为:在确保安全齐穗的前提下,最佳适宜播期为 6 月 20 日左右,采用湿润水育秧方式,栽插密度保证在 24 万 /hm² 左右,施纯氮用量

110~150kg/hm²,水分管理按前期湿润灌溉、孕穗期 浅水灌溉、抽穗至成熟期干湿交替灌溉的原则进行, 即可获得较为理想的产量。

参考文献

- [1] 李甫荣,李育生,车崇洪,等.不同施氮水平对杂交水稻新组合Ⅱ优 T16产量的影响[J].中国种业,2015(3): 57-58
- [2] 廖盛水. 秧龄、移栽密度和施氮量对超级稻"两优 616"产量的影响 [J]. 农学学报,2017,7 (3): 1-4
- [3] 管恩相,刘洪,曾跃华,等. 氮肥运筹及栽插密度对常规新品种湘早籼46号产量及产量构成因素的影响[J]. 中国种业,2010(9):76-78

(收稿日期: 2017-04-28)